3.161 \(\int \frac{\csc ^2(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=235 \[ -\frac{(a+2 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{a^2 f (a+b)}-\frac{(a+2 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{a^2 f (a+b) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}+\frac{b \cot (e+f x)}{a f (a+b) \sqrt{a+b \sin ^2(e+f x)}}+\frac{\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{a f \sqrt{a+b \sin ^2(e+f x)}} \]

[Out]

(b*Cot[e + f*x])/(a*(a + b)*f*Sqrt[a + b*Sin[e + f*x]^2]) - ((a + 2*b)*Cot[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2]
)/(a^2*(a + b)*f) - ((a + 2*b)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[
a + b*Sin[e + f*x]^2])/(a^2*(a + b)*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) + (Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin
[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(a*f*Sqrt[a + b*Sin[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.268003, antiderivative size = 235, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {3188, 472, 583, 524, 426, 424, 421, 419} \[ -\frac{(a+2 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{a^2 f (a+b)}-\frac{(a+2 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{a^2 f (a+b) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}+\frac{b \cot (e+f x)}{a f (a+b) \sqrt{a+b \sin ^2(e+f x)}}+\frac{\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{a f \sqrt{a+b \sin ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(b*Cot[e + f*x])/(a*(a + b)*f*Sqrt[a + b*Sin[e + f*x]^2]) - ((a + 2*b)*Cot[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2]
)/(a^2*(a + b)*f) - ((a + 2*b)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[
a + b*Sin[e + f*x]^2])/(a^2*(a + b)*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) + (Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin
[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(a*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 3188

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/Sqrt[1 - ff^2*x^2], x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !In
tegerQ[p]

Rule 472

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*(e*x
)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*e*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d)*(
p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*(b*c - a*d)*(p + 1) + d*b*(m + n*(
p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p
, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\csc ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{1-x^2} \left (a+b x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{b \cot (e+f x)}{a (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{-a-2 b+b x^2}{x^2 \sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{a (a+b) f}\\ &=\frac{b \cot (e+f x)}{a (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{(a+2 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{a^2 (a+b) f}+\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{-a b-b (a+2 b) x^2}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{a^2 (a+b) f}\\ &=\frac{b \cot (e+f x)}{a (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{(a+2 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{a^2 (a+b) f}+\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{a f}+\frac{\left ((-a-2 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{a^2 (a+b) f}\\ &=\frac{b \cot (e+f x)}{a (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{(a+2 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{a^2 (a+b) f}+\frac{\left ((-a-2 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{b x^2}{a}}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{a^2 (a+b) f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}+\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{a f \sqrt{a+b \sin ^2(e+f x)}}\\ &=\frac{b \cot (e+f x)}{a (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{(a+2 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{a^2 (a+b) f}-\frac{(a+2 b) \sqrt{\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{a^2 (a+b) f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}+\frac{\sqrt{\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}{a f \sqrt{a+b \sin ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 1.19775, size = 170, normalized size = 0.72 \[ \frac{\cot (e+f x) \left (-2 a^2+b (a+2 b) \cos (2 (e+f x))-3 a b-2 b^2\right )+\sqrt{2} a (a+b) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} F\left (e+f x\left |-\frac{b}{a}\right .\right )-\sqrt{2} a (a+2 b) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac{b}{a}\right .\right )}{\sqrt{2} a^2 f (a+b) \sqrt{2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

((-2*a^2 - 3*a*b - 2*b^2 + b*(a + 2*b)*Cos[2*(e + f*x)])*Cot[e + f*x] - Sqrt[2]*a*(a + 2*b)*Sqrt[(2*a + b - b*
Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + Sqrt[2]*a*(a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*Ell
ipticF[e + f*x, -(b/a)])/(Sqrt[2]*a^2*(a + b)*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]  time = 1.267, size = 199, normalized size = 0.9 \begin{align*}{\frac{1}{{a}^{2}\sin \left ( fx+e \right ) \left ( a+b \right ) \cos \left ( fx+e \right ) f} \left ( \sin \left ( fx+e \right ) \sqrt{-{\frac{b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a+b}{a}}}\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}a \left ({\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) a+{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) b-{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) a-2\,{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) b \right ) + \left ( ab+2\,{b}^{2} \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{4}+ \left ( -{a}^{2}-2\,ab-2\,{b}^{2} \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2} \right ){\frac{1}{\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x)

[Out]

(sin(f*x+e)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*(cos(f*x+e)^2)^(1/2)*a*(EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a+E
llipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a-2*EllipticE(sin(f*x+e),(-1/a*b)^(
1/2))*b)+(a*b+2*b^2)*cos(f*x+e)^4+(-a^2-2*a*b-2*b^2)*cos(f*x+e)^2)/a^2/sin(f*x+e)/(a+b)/cos(f*x+e)/(a+b*sin(f*
x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(csc(f*x + e)^2/(b*sin(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \csc \left (f x + e\right )^{2}}{b^{2} \cos \left (f x + e\right )^{4} - 2 \,{\left (a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-b*cos(f*x + e)^2 + a + b)*csc(f*x + e)^2/(b^2*cos(f*x + e)^4 - 2*(a*b + b^2)*cos(f*x + e)^2 + a
^2 + 2*a*b + b^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc ^{2}{\left (e + f x \right )}}{\left (a + b \sin ^{2}{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**2/(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Integral(csc(e + f*x)**2/(a + b*sin(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(csc(f*x + e)^2/(b*sin(f*x + e)^2 + a)^(3/2), x)